\\ 000

Smart Irrigation ||
System using ;
Microcontroller
(sism)

Presented by
Ramon Zintzun, Alexander Ov, Dylan St.

Laurent, Steven Do
Group 8

Table of contents

Introduction Getting Started

To create a smart irrigation Research, material, sensors
system that uses sensors to and code for SISM
automate watering.

N Result Q&A

\\ Finally be able to keep Any questions that you may
different plants without have

killing them.

Microcontroller or World Controller?!
For now, Irrigation controller. :)

e W™ L] R
L =

Introduction

The Purpose and objectives of this project is

to implement the class lessons into real life
applications.

N

What is Smart Irrigation System?

A smart irrigation system is a system
that incorporates sensors that allow it
to monitor real world conditions and
react to them.

The system takes the data that it has
collected from the sensors and then
compares it to a set of parameters that
are coded into the system. Based on
the coded parameters the system will
then respond with an appropriate
reaction.

The smart irrigation system that we
have implemented incorporates 4
analog sensors.

Analog Sensors Used:

Moisture Levels
Temperature

Light Levels

Water Source Levels.

What is it practical use for?

Practical use of a smart irrigation system using a microcontroller is to
automate the irrigation process. The smart irrigation system can be
programmed to control the following components,

e Amount of water
e Frequency of watering
e Soil moisture level

® Temperature (Indoors or Outdoors)
® Humidity

® \Weather Conditions

is ensures that the crops or plants in this situation receive the right
unt of water at the right time, which can result in improved
growth, reduced water consumption and lowering operation cost.

Getting Started

Research, materials/components, sensors

and code that went into the creation of
SISM

coe N

Building Blocks of a Smart Irriga

System
Components:

Arduino Uno development Board
4-Channel 5V DC Relay

LCD Display

3-4.5V DC Water Pump
Tubing to transfer water
Capacitive Moisture Sensor
Light Sensor (photoresistor)
Temperature Sensor

Water Level Sensor
Regulated Power Supply
Water Container

Plants
Code \\

= When the PIC18F exits the reset c«

ino Uno Development Board ""."..".".".".".

PIC18F Reset - continued . SO\ M\ l hk TO QIC [,s;

starts normal operation, program an be
restarted from address O upon activation of th

Reset o
s Digital I(0 rd

= R MCLR/ Vpp G'lfDU'ld

PIC18F

M~ W W < M N
R U ~

DIGITAL (PVWN~) X

ExTernAaL

[] {)
\C:)Y%TF} | € WWW.ARDUINO.CC - MADE
B o e e e

Speony Anoulog Pins, 6 Total

?eaula.*ai powc{ Ovt

Pins 3,5,6,4”0,]
Foll

The Arduino Uno Development
Board is very user friendly since it
has all the basic needs of a
microcontroller incorporated into
it.

Things that we have studied can
be seen incorporated into the
development board.

Reset Button

Digital I/0

Analog Inputs

Serial Programming Pins
PWM Pins

Power pins

Ground Pins

External Crystal

4-Channel 5V DC Relay'."."."."."."."".

AT would not provide
f::i, ok enough power to
Pump run the pumps.

The Relay is used so
I that an outside
power source can

f) fam)

e = be used to power
g = | o the water pumps
S| s ||| g since the Arduino
o e =
'{Q N
5

QUASZ YOI OAA0E. VO
OVASZL YOI OVAQSZ YO
- @19N0s

SNEL O g

|

’Py
=
)
)
<
3
E,
()

The relay acts like a
switch connecting
or disconnecting a

wire.
[brround ')
LED's oy
. Relay will wait for a
R g signal from the
From A(Ju.mo TRV DIGITAL (P*:J)& X & 9
'\'O Rela} % s ‘ B i contr ” t
ARDUINO U Nou_n - : cgnnect (:
H ! E— disconnect ire.

I12C LCD Display
12C Protocol

The 12C or Inter-Integrated circuit is a chip to chip protocol
that is used when communicating with low-speed
peripherals using 2 lines: a serial clock (SCL) and a serial
data (SDA). The SDA stores the data being transferred and
the SCL clock signal synchronizes the data transfer
between the devices on the 12C bus.

Project Application

Using the LiquidCrystal_I2C library we are able to use the
SCL to synchronize the LCD display with the Arduino UNO
based on the microcontroller clock speed. Then using the
libraries commands such as print() we are able t(;em\rd\d;’f
from the Arduino UNO to the LCD display through-the SDA.
000

Capacitive Moisture Soil Sensor

Background

A capacitive soil sensor is an electronic device that
measures the capacitance of the soil, which varies with
the water content of the soil.

Project Application

In the SISM, we used two sensor is used to measure the
soil moisture level and send the data to the
microcontroller. The microcontroller can then use the data
to determine whether the soil needs watering and active
the irrigation system accordingly.

Photoresistor

[]
Photoresistor
We determined the light level of the environment using a
E.ﬁfj;{ggg—hgﬁ photoresistor or a photocell which is a variable resistor
where the resistance is changed through a change in light
Rhotoconductiveg level.
matengdl oues
100 surface

Project Application

Photoresistor information was utilized to provide more
awareness to the user about the environment. This was
\ accomplished by broadcasting the analog readout to the

Temperature Sensor (LMT84)

Background

The LMT84 is a precision analog temperature sensor that
is used in electronic systems to measure temperature. It
operates between the temps of .-50°C to 150°C with an

accuracy of £0.4°C at room temperature.

Project Application

In the SISM, the LMT84 temperature sensor can be used to
measure the temperature of the soil or water to determine the
optimal time for irrigation. The temperature of the soil or water

can affect the growth of plants and crops, and by monitoring
the temperature using the LMT84 sensor, the irrigation system
can be programmed to only water when the temperature is

@ ® @ithin the desired range.

LMT84 Temperature Ranging

TEMP Vour TEMP Vour TEMP Vour TEMP Vour TEMP Vour

L] °) (mv) 0 (mv) C) (mv) (€] (mv)) (mv)

-50 1299 -10 1088 30 871 70 647 110 419

Supplied Data Sheet Equation = = : = : = = = = =
—48 1289 -8 1077 32 860 72 636 112 407

47 1284 -7 1072 33 854 73 630 13 401
2 — 1 —46 1278 6 1066 34 849 74 625 114 396

V-_1=

—45 1273 5 1061 35 843 75 619 115 390
Z — Z —44 1268 -4 1055 36 838 76 613 116 384
]_ 43 1263 -3 1050 37 832 77 608 17 378

Z — 1 —42 1257 2 1044 38 827 78 602 118 372
2 1 -1 1252 -1 1039 39 821 79 596 119 367

—40 1247 0 1034 40 816 80 591 120 361
-39 1242 1 1028 41 810 81 585 121 355
-38 1236 2 1023 42 804 82 579 122 349
. o o .
Solving for a range of 0°C - 37°C yields: T | er || TEP | Vex || TEP | Nex || TEP | Vex || TEMP | Ve
cc) (mV) cc) (mV) cc) (mV) cc) (mV) cc) (mV)
37 1231 3 1017 43 799 83 574 123 343
1 0 1 2 V -36 1226 4 1012 44 793 84 568 124 337
- Tn,V -35 1221 5 1007 45 788 85 562 125 332
—_— Temp 34 1215 6 1001 46 782 86 557 126 326
= 46 -33 1210 T 996 47 777 87 551 127 320
J. 32 1205 8 990 48 77 88 545 128 314
-31 1200 9 985 49 766 89 539 129 308
-30 1194 10 980 50 760 90 534 130 302
20 1189 11 974 51 754 91 528 131 296
-28 1184 12 969 52 749 92 522 132 291
27 1178 13 963 53 743 93 517 133 285
-26 1173 14 958 54 738 %4 511 134 279
-25 1168 15 952 55 732 95 505 135 273
-24 1162 16 %47 56 726 9% 499 136 267
-23 1157 17 941 57 721 o7 494 137 261
22 1152 18 936 58 715 98 488 138 255
-21 1146 19 931 59 710 99 482 139 249
-20 1141 20 925 60 704 100 476 140 243
19 1136 21 920 61 698 101 471 141 237
-18 1130 22 914 62 693 102 465 142 231
-17 1125 23 909 63 687 103 459 143 225
-16 1120 24 903 64 681 104 453 144 219
- -15 1114 25 898 65 676 105 448 145 213
-~ 14 1109 26 892 66 670 106 442 146 207
» ‘ . . 13 1104 27 887 67 664 107 436 147 201
12 1098 28 882 68 659 108 430 148 195
-1 1003 29 876 69 653 109 425 149 189
150 183

Water Level Sensor Module

Background meisass

A water level sensor module is an electronic device used to G)@_m
measure the level of water in a container or a tank. The E i:
sensor module typically consist a series of probes that are
placed inside the container or tank, which detects the level
of water by measuring the electrical conductivity of water. ool oy

Project Application

In SISM, the water level sensor module is used to help prevent over-or
under-watering of plants, which can lead to either waste of water or
damage to the plants. By monitoring the water level in real-ti the
system can adjust the watering schedule to ensure the plants receive the
optimal amount of water.

Fabrication of Environment

-

Water Level Sensor Mount

To store the water used to upkeep the plant life in our
system, a small 1 quart paint can was utilized to show
functionality of water pumps. The water level sensor was
fashioned to a thin slice of wood that was mounted on the
paint can to provide a solid mount surface for our sensor.

Possible Larger Supply ‘

Due to portability being prioritized in the project design, a larger source
container was not desired. In a more realistic application a larger 5 gallon
container would be utilized to provide for longer operation time .without

human intervention. X
o000 \

Fabrication of Environment
Main Mounting Platform

To protect the fragile components of the system
such as the relay and arduino, a master mounting
surface was required. A 2 inch thick board was
used as a platform to mount to with screws
ensuring stability amongst parts as well as
protection from water.

A splitting board to generate a compartment like
section was obtained by measuring the 13 degree
angle in the tub and mounted to the main platform.

Closed Loop Control System & Code

Microcontroller Plant/Process

Here the controller reacts The water pump and

to input from the sensors power source act as the

and responds with new power plant for the

instructions. system.
Sensors Input

The System uses 4 analog The data from the sensors is
sensors to analyze outside fed to the controller so that it
conditions so that data can give compensated
can be fed to the instructions to the plant
000 controller. (water pumps).

N ode Implementation for Smart irrigation
System using Microcontroller

Coding Language

For this project, we wrote our code for SISM in C along with including comments.

Integrated development environment (IDE)

To program the Arduino Uno Development Board, we choose to write it in the Arduino
IDE. The Arduino IDE allows for its variety of built-in-library, like the LiquidCrystal_I2C
library, to interface with the common sensors, led, water pumps, and temperature
sensor. In addition for the compatibility of it being cross-platform.

N

RSN
ORI NN

L Results

As you can see the plants are still ALIVE!

000 \\

These are actual Pictures of
our Live Plants! :)

/. A picture is worth a thousand words

THE CODE: '

¢include <LiquidCrystal I2C.h> // include the LiquidCrystal I2C library
LiquidCrystal_I2C lcd(0x27,16,2); // initialize the lcd display with 16 columns and 2 rows
int lightsensorValue = 0; // initialize the wvariable for the light sensor

const int tempPin = A3; // define the analog input pin for the temperature sensor (LMTIS4)
float tempC = 0; // initialize the temperature value in Celsius
float tempF = 0; // initialize the temperature value in Fahrenheit

const int btnPin = 12; // define the digital input pin for button 1
const int btn2Pin = 13; // define the digital input pin for button 2
int btnState = 0; // initialize the state of button 1

int btn25tate = 0; // initialize the state of button 2

int lcdState = 0; // initialize the state of the lcd display

int OutToRelaylDRY
int OutToRelay2Wet

2; // define the digital output pin for the dry pump relay

3:; // define the digital output pin for the wet pump relay

int InMoistureSensorl = AO; // define the analog input pin for the first moisture sensor
int InMoistureSensor2 Al; // define the analog input pin for the second moisture sensor
float MoistureSensorValuel = 0; // initialize the value of the first moisture sensor
float MoistureSensorValue2 0; // initialize the value of the second moisture sensor

int MoistlPercentage = 0; // initialize the percentage of moisture for the first sensor

-

int Moist2Percentage = 0; // initialize the percentage of moisture for the second sensor

N

ODE: c o oc e e e e

void setup()

{

Serial.begin(9600); // initialize serial communication

lcd.init(); // initialize the lcd display

lcd.clear(); // clear the lcd display

lcd.backlight(); // turn on the backlight for the lcd display
led.setCursor(0,0); // set the cursor to the top left corner of the lcd display

pinMode (A1, INPUT); // set pin Al as an input

pinMode (A2, INPUT); // set pin A2 as an input

pinMode (9, OUTPUT); // set pin 9 as an output

pinMode (btnPin, INPUT); // set pin btnPin as an input

pinMode (btn2Pin, INPUT); // set pin btn2Pin as an input

pinMode (OutToRelaylDRY, OUTPUT); // set pin OutToRelaylDRY as an output
pinMode (OutToRelay2Wet, CUTPUT); // set pin OutToRelay2Wet as an output
pinMode (InMoistureSensorl, INPUT); // set pin InMoistureSensorl as an input
pinMode (InMoistureSensor2, INPUT); // set pin InMoistureSensor2 as an input

\ digitalWrite (OutToRelaylDRY, HIGH); // set the initial state of the dry pump relay to off
digitalWrite (OutToRelay2Wet, HIGH); // set the initial state of the wet pump relay to off

CODE: c o oc e e e e

void loop()

{

// Read temperature from analog pin and convert to Fahrenheit
int tempRead = analogRead(tempPin);

float tempmV = ((float) tempRead)*4.9; O\
float volt_v = tempmV/1600.0; // Control water pump based on moisture sensor readings
float temp_C = ((1012.@ - tempmV)/5.45); if (MoistureSensorValuel > 400) {
float temp_F = 1.80 * temp_C + 32.0; digitalirite (OutToRelaylDRY, LOW) ;
}
else {

.F
FiReatd Stat? ? twe button% digitalWrite (OutToRelaylDRY,HIGH);
btnState = digitalRead(btnPin); }

btn2State = digitalRead(btn2Pin);
if (MoistureSensorValue2 > 300) {
// Print temperature to serial monitor digitalWrite (OutToRelay2Wet, LOW) ;
Serial.println("LMT84 Temp Sensor: "); }
Serial.print("Analog: "); Serial.println(tempRead); else)
Serial.print("mVolts: "); Serial.println(tempmV,4);) SRBAINF IO TORET VA, RAC
Serial.print("Temp: "); Serial.println(temp_F, 4);
// Update LCD display with sensor data
// Read sensor data and update moisture percentage values - printPage(lcdState, temp_F, lightsensorValue, MoistureSensorValuel/1l0, MoistureSensorValue2/10);
sensorRead(lightsensorValue, InMoistureSensorl, InMoistureSensor2);

// Delay for 500 milliseconds before looping again
delay(500);

// Determine LCD state based on button press
if (btnState == HIGH) {
if(lcdState<1) lcdState++;
else if(lcdState>@) lcdState--;
}
if (btn2State == HIGH) {
if(lcdState»@) lcdState--;
else if(lcdState<l) lcdState++;

}

Vv,

THE CODE:

// Read moisture sensor data
void sensorRead(int lighsensorValue, int InMoistureSensorl, int InMoistureSensor2) {

// Read light sensor data \\\\\\
lightsensorValue = analogRead(A2);

Serial.printlin(lightsensorValue);

// Read moisture sensor 1 and print value
MoistureSensorValuel= analogRsad(InMoistureSensorl);
MoistlPercentage = map (MoistureSensorValuel,199,514,100,0);
Serial.print("Moisture Sensor 1 Value: ");

Serial.print (MocistureSensorValuel):;

// Read moisture sensor 2 and print value
MoistureSensorValue2= analogRead(InMoistureSensor2);
Meist2Percentage = map (MoistureSensorValue2,186,512,100,0);
Serial.print(” Mpisture Sensor 2 Value: ");
Serial.println(MoistureSensorValue2);

// Delay for 1 second before continuing
delay (1000);

ODE: c o oc e e e e

void printPage(int lcdState, int temp_F, int lightsensorValue, int MoistureSensorValuel, int MoistureSensorValue2) {

// Check if the lcdState is 0
if(lcdState == 0){
// Clear the LCD screen
lcd.clear():

// Set the cursor position to display "Plant 1" on the first row
lcd.setCursor(0, 0);
lcd.print("Plant 1");

// Set the cursor position to display "Plant 2" on the first row, & characters from the left
lcd.setCursor(8, 0);
lcd.print ("Plant 27);

- - // Set the cursor position to display "Soil:™ on the second row, first column
lcd.setCursor(0, 1);
lcd.print("Soil:");

\\\\\\\ // Display the moisture level of the first plant on the second row, after "Soil:"

\\\\\\ lcd.print (MoistlPercentage);

// Set the cursor position to display "Soil:" on the second row, eighth column
lcd.setCursor(8, 1);
led.print("Soil:");

......

Thanks!

Does anyone have any questions?
If you do, please address them to the professor!
JUST KIDDING

NOW CLAP :)

https://bit.ly/3A1uf1Q
https://www.flaticon.com/
https://www.freepik.com/

CalPoly
Pomona

California State Polytechnic University Pomona
Department of Electrical and Computer Engineering
ECE 3301-01

Smart Irrigation System using Microcontroller (SISM)

Presented By
Ramon Zintzun
Alexander Ov
Dylan St Laurent
Steven Do
May 7, 2023

Table of Contents:

N 01 3 T e 2
INtroduction c...ceeieeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiittiitttiietteietttiseetiscecistecnnsscnnacane 3
Experimental Methodologyccovveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiieiiiieieineecnnneen 4
... 5
... 6

Experimental ReSultscccciiiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiniesentcsesccsnncens 7
.. 8
.. 9

Challenge SUMMATIY....ciiiiiiiiiiiiintiiiiiintiiiieesiectessstesssssstosesssssssssssssssssssssnes 10
... 11
... 12

@1 1 10 11T 10 1L 13
References «ocuvieiiitiietiietiateiatetsctnssencennces 14
Code Addenduml.....cceeiiieiiiineiiiiiiiieiiiieiiiietiiietiieeeiiesteissccsnsccsssccsssscsssscnes 15
.. 16
.. 17

Abstract:

The Smart Irrigation System using Microcontroller (SISM) is a cutting-edge technology
that holds immense potential in revolutionizing plant irrigation practices. In today's society,
where water scarcity and environmental sustainability are pressing concerns, SISM offers a
practical and efficient solution for optimizing water usage in plant irrigation. SISM leverages the
power of microcontrollers to gather real-time data from various sources such as weather
conditions, soil moisture levels, and plant-specific requirements. By analyzing this data, the
system intelligently determines the precise amount of water needed by each plant, ensuring
optimal hydration without any water wastage. This targeted approach not only conserves water
but also minimizes the risk of overwatering, which can be detrimental to plant health. In today's
society, where efficient resource management is crucial, SISM plays a pivotal role in conserving
water resources. By significantly reducing water consumption in plant irrigation, the system
helps address water scarcity issues and promotes sustainable water usage practices. Additionally,
SISM enables farmers and gardeners to optimize their irrigation processes, resulting in healthier
plants, improved crop yields, and reduced maintenance costs.

L
]

T i

Figure 1: Concept of Smart Irrigation System using an Microcontroller

Introduction:

Smart irrigation systems have gained significant attention in recent years due to their
potential to optimize water usage and improve crop yields. These systems leverage advanced
technologies, such as microcontrollers, to monitor and control irrigation processes automatically.
In this research paper, we focus on the implementation of a Smart Irrigation System using a
Microcontroller (SISM) for plants.

The use of microcontrollers in smart irrigation systems offers numerous advantages,
including precise control over watering schedules, real-time monitoring of environmental
parameters, and efficient water resource management. By integrating sensors and actuators with
a microcontroller-based control system, the SISM can collect data from various sources, such as
soil moisture sensors, temperature sensors, and light sensors, to make informed decisions about
irrigation requirements.

The context of this project revolves around the increasing need for sustainable
agricultural practices in the face of growing water scarcity and climate change. Traditional
irrigation methods often result in excessive water consumption and suboptimal plant growth,
leading to water waste and reduced crop productivity. By developing and implementing smart
irrigation systems, we can address these challenges by optimizing water usage, minimizing
resource wastage, and enhancing the overall efficiency of agricultural practices.

The importance of this project lies in its potential to revolutionize irrigation practices in
the agriculture industry. By combining the capabilities of microcontrollers and sensor
technologies, the SISM can provide precise and timely irrigation, tailored to the specific needs of
plants. This approach ensures that plants receive adequate water while avoiding over-or
under-watering, resulting in improved crop quality and yield. Moreover, the efficient utilization
of water resources contributes to environmental sustainability and the conservation of this vital
resource.

In this paper, we present a detailed analysis of the Smart Irrigation System using a
Microcontroller (SISM), focusing on its hardware and software components. We will discuss the
design and implementation of the system, including the integration of various sensors and
actuators.

Through this paper, we aim to contribute to the ongoing efforts in developing sustainable
agricultural practices and promoting water conservation through the adoption of smart irrigation
systems. By highlighting the capabilities and benefits of the Smart Irrigation System using a
Microcontroller (SISM), we envision a future where precision agriculture becomes the norm,
ensuring optimal plant growth while preserving our precious water resources.

Experimental Methodology:

This code is written in the Arduino programming language and includes the use of
various sensors, an LCD display, and relay modules to control outputs based on input readings. It
can be used in several real-life applications, such as plant watering systems, home automation
systems, and temperature monitoring systems.

The code starts with including the LiquidCrystal I2C library, which enables the code to
communicate with an LCD display module. It initializes the LCD display module and sets the
backlight on. Then it defines various pins for sensors, buttons, and relay modules.

The first sensor used in this code is the LMT84 temperature sensor, which is connected to
pin A3. The code reads the analog value from the sensor, converts it to temperature in Fahrenheit
and prints the values to the Serial Monitor. The temperature sensor can be used in applications
such as a temperature monitoring system for a greenhouse or a room.

Next, the code reads the state of two buttons connected to pins 12 and 13. The button
states are used to control the LCD display to show different readings from sensors. This feature
can be used in home automation systems, where users can control the displays based on their
needs.

Third, in the code, the photoresistor is connected to analog pin A2 (lightsensorValue).
The sensorRead function reads the analog value from the photoresistor using analogRead(A2),
and the obtained value is stored in the lightsensorValue variable. The lightsensorValue is then
used in the printPage function, where it can be displayed on the LCD screen along with other
sensor data. The value can also be printed to the serial monitor for debugging purposes using
Serial.println(lightsensorValue). Based on the light intensity measured by the photoresistor, the
Smart Irrigation System can make decisions about when to water the plants. For example, if the
light intensity is low, indicating that it is dark or there is little sunlight, the system may delay or
reduce the watering to avoid over-watering the plants. Conversely, if the light intensity is high,
indicating that it is bright and sunny, the system may increase the watering frequency to
compensate for increased evaporation and plant water requirements. While such a system is not
present within the operation of our SISM, it could be easily added as an operational feature in an
updated model.

The code then reads the analog value from two moisture sensors connected to pins A0
and A1, respectively. The MoistureSensorValuel and MoistureSensorValue2 are threshold values
set to decide if the relay modules should be turned on or off. If the moisture value is above the
threshold, the relay module connected to the corresponding moisture sensor will be turned on,
which is used in the plant watering system.

Finally, the code sets the pins for relay modules as outputs and sends a high signal to
them to turn them off initially. Then the code sets the pins for moisture sensors as inputs. The
relay modules' pins are set as outputs to control the water pump's power supply. This allows for
users to turn on or off the water pump based on moisture levels in the soil.

#0)— 30—) — @
— v — G — I

P01 Lo ™
— ey — G —

(OFITAD (ANALOG) GENED (SERIAL) P 12¢ @l GRS

Figure 2: Diagram of Arduino Development Board

c 3.3v Capacitive Soil Moisture Sensor v1.2
H T s
1006F RC filter Peak Detector
sion TLCSSE
c3 Rl et
1L
L] = o | ’I
R rRoBe Gt == [R4
L (in saily peg 3

Figure 3: Internal schematic of an Capacitive Soil Moisture Sensor v1.2

Clear coating over
Electrodes entire top surface
Photoconductive
Cold weld material over
contacts top surface
Ceramic
T Wire terminals

Figure 4: Diagram of an Photoresistor

Relay 1
Common

Relay 1
Normally
Closed

]
Y
3
| 2
| 6

16x2 LCD LCco

38z
z z
T S
gl meser YV o
1 4
> b=
28 aner s s
: B
4 5 i
- " s 2
o | 4 Amune O [T
10| .3 2008
n A B 21
s o 7 S D 4 Bl v] of ol el
w [ufel s ol o o o e il o o)
u =
N = S PP sigpgezzuazzsvycy
e o g3 onD o BBG5E858YETESE
2 = 2 SCL 42
(I] L2 1 onp
L1 vee
EER
PCFESTA
GND LCD-12C-CONVERTER

electroniclinic.com

Figure 5: Diagram of an 12C LCD Display

Relay 1 Relay 2

Relay 2 Relay 3

Relay 3 Relay 4

fly Normall Relay 2 N lly Normall Relay 3 Normall I Relay4
Rty y Common e 4 Common % Sy Common
Open Closed Open Closed Open Closed
Relay 4
Normally
Open
1
W gss gss @ 233 @
s zapll 2ol
= 288 SBEX el SRE el
S = g =i =
= D8s $3% o B 038 o E
QIEeE reE gt g
£ O8s 02% s 3 5
e
a 1D vee
]
vCcc

GND IN1 IN2 IN1 N1 VCC

Figure 6: Diagram of an 4-Channel 5V

Experimental Results:

The Smart Irrigation System using Microcontroller (SISM) was implemented and tested
to evaluate its performance in monitoring and controlling soil moisture levels for two plants. The
following results were obtained:

1. Temperature Monitoring:

a.

The LMT84 temperature sensor was used to measure the temperature in
Fahrenheit. The analog readings from the sensor were converted to
temperature values. The temperature values were printed to theI2C LCD
Display. No significant issues or deviations were observed during
temperature monitoring.

2. Moisture Sensor Readings:

a.

Two moisture sensors (Moisture Sensor 1 and Moisture Sensor 2) were
utilized to measure the moisture levels in the soil for Plant 1 and Plant 2,
respectively. The moisture sensor values were obtained through analog
readings and converted to percentage values. The moisture sensor readings
were printed to the [2C LCD Display.

i. Moisture Sensor 1: The readings from Moisture Sensor 1 were in
the range of 199 to 514. These values were mapped to a moisture
percentage range of 0 to 100. The moisture level of Plant 1 was
displayed on the LCD screen.

ii. Moisture Sensor 2: The readings from Moisture Sensor 2 ranged
from 186 to 512. These values were mapped to a moisture
percentage range of 0 to 100. The moisture level of Plant 2 was
displayed on the LCD screen.

3. Photoresistor:

a.

A light sensor was used to measure the light intensity. The analog reading
from the light sensor was obtained and printed to the I2C LCD Display.
The light intensity monitoring was performed successfully.

4. LCD Display:

a.

The LCD display was utilized to present the sensor data and system status.
The LCD screen showed two rows of information. The first row displayed
the labels "Plant 1" and "Plant 2" for the respective plants. The second row
showed the moisture levels of the plants labeled as "Soil:" followed by the
percentage values. The LCD display was updated based on the state of two
buttons (btnPin and btn2Pin). Pressing btnPin cycled through different
display states, while btn2Pin reversed the cycling direction. The LCD state
change was synchronized with the button presses.

5. Water Pump Control:

a.

The SISM system controlled two water pumps (dry pump and wet pump)
based on the moisture sensor readings. If the moisture sensor reading for a

plant exceeded a specific threshold, the respective water pump was
activated. Otherwise, the water pump remained off. The system
successfully controlled the water pumps based on the moisture sensor
data.

Overall, the SISM system demonstrated effective monitoring of temperature, moisture
levels, and light intensity. The LCD display provided clear and concise information about the
plants' moisture levels. The water pump control mechanism operated as intended, ensuring
efficient irrigation based on the plants' needs. These results indicate that the SISM system can
effectively regulate irrigation for plants in an automated and intelligent manner.

PeeE Be BNEERE

e i 2 =3

Figure 8: Outputs of the Plant 1’s & Plant 2’s Moisture Sensor Readings on LCD Display

i o

Figure 10: Visual Photos of the Live Plants getting water from the Water Pump

Summary of Challenges:

Development of the Smart Irrigation System did not come without its various trials. One
of the first issues was a display error in the LCD display. More specifically, when outputting to
the LCD an error was observed that only the first character of the transmitted data would display
on the screen. In an attempt to correct this error, we first scoured through the code ensuring that
we didn't make a mistake with placements of other text and title locations. After it was clear that
there were no errors in printing to the screen in code syntax, we attempted to see if the display
itself was damaged by printing a test code to the screen from a separate project file. The issue
persisted through to the new file which indicated that the error was outside of the syntax of the
code itself.

The next easiest solution to attempt was to transfer the code to a separate computer. Upon
changing the computer that was connecting to the display, the expected output was observed on
the Liquid Crystal Display. This isolated the error to the original machine that the code was
being developed from. Originally, when installing the library for connecting to the LCD multiple
libraries were offered. An incorrect liquid crystal library was first downloaded to the machine
and promptly changed to the correct version. However, because both libraries existed on the
machine, the two libraries conflicted with each other when being called. To rectify the mistake,
both libraries were uninstalled and only the correct library was installed and included.

The next issue encountered in the design process pertained to the water level sensor.
When we first assembled all of the sensors with the arduino, we had excluded the water level
sensor as we did not plan on utilizing it in the project. Multiple, separate instances of the code
were run with the light, temperature, and moisture sensors ensuring that the SISM was functional
in this test stage before the introduction of the water level sensor. Upon connecting the peripheral
to port A4 and launching the program with an updated version of the source code, an error would
occur resulting in the program hanging. No sensor readings were observed in the arduino output
window and the LCD did not make it through its initialization stage, resulting in the 2x16 grid
display of the LCD being filled.

It was apparent that there was an issue with the addition of the sensor here so we
progressed to searching through the code implementation for mistakes. After we verified that
there was no issue in the syntax of the code, we delved through the implementation and also
found it to be free of errors. This moved the search to the hardware realm and resulted in us first
testing the functionality of the wires between the devices. The errors persisted through with the
replacement wires and so we suspected a problem with the sensor. After running multiple tests
with the level sensor utilizing a separate source code we determined that there was an issue with
the sensor itself. To fix this problem we have obtained a new water level sensor and extras to
ensure at least one functional sensor is acquired. Due to issues with the shipping of the water
sensors, their arrival was pushed back past the first finalized design of the project, resulting in
their removal from the current design phase.

Finally, one of our most key issues was the quality of the moisture sensors. As it turns

out, there are many capacitive moisture sensors that are shipped out that dont work. Considering
that the moisture sensor was a key element in our project this was very problematic. As it turned

10

out, the first set of 4 moisture sensors were bad and had to be replaced with another 4 that were
ordered later which caused a serious set back.

Starting off with bad moisture sensors was a very big headache especially since the first
set of 4 were bad. This was bad because at first we did not know why are project was not
working and did not know if it was our code, we did not know if it was software or hardware
related, and since we expected the equipment to work we thought it was in our software at first,
and then perhaps the way we had it connected. After painstakingly going through the logic and
code, we figured we should order a second set of equipment including sensors and
microcontroller. We then started with the microcontroller by verifying power and logic with a
multimeter. The code and microcontroller (Arduino-Uno) seemed to be working fine. A high
gave 5 volts, and low gave 0 volts. So the next logical step was to check the sensor.

After going through the microcontroller and code with a multimeter and verifying that
everything seemed to be ok, it was now time to test and troubleshoot the sensors. So a new batch
of 4 sensors were used and as it turned out 2 of the four sensors were working. We then decided
to see what was wrong with the other 6 sensors because originally we were going to use 4 of
them. So after some research and going through a schematic we found online for the capacitive
moisture sensors, it turns out that there were several issues. To break it down there were 3 main
issues. One was that some were missing a voltage regulator, the second was that some used the
wrong timer chip, and the third and biggest issue was that there was a 1Mega ohm resistor that
was not grounded properly and was left open. It was the ungrounded resistor that was causing the
biggest issue with the sensor.

Problem 1 with the capacitive moisture sensor (missing voltage regulator) would cause
the sensor to read funny when powered by a battery. This happened because the battery was not
a constant voltage and would change over time as it depleted or with temperature (cold
temperature in particular). A fix was to use a constant regulated voltage source.

Problem 2 with the capacitive moisture sensor was that some used the wrong timer chip.
The correct timer chip was either the “TLCS55C or TLC555I” which used 2-15 volts or 3-15 volts
which was good since the sensor needed 3.3 volts to be powered. The problem was that on some
of the sensors the timer chip used were different models that required 5-15 volts. That of course
would cause the moisture sensor to not read or read funny since the timer chip was used to turn a
square wave into an analog reading which if not working would cause the issue of the sensor not
working.

Problem 3 was the biggest but also had a solution that could fix it. The last problem with
the capacitive sensor was that it had a resistor that was in parallel with another capacitor that tied
the analog out wire to ground which was left open. This was identified with a continuity check
with a multimeter. So one fix was to solder a wire from the resistor on the sensor to the ground
pin, or to solder a 1Mega ohm resistor from the ground pin to the analog out pin. We decided to
just solder a wire, to resolve the issue.

In the end, we ended up just using 2 of the original working capacitive moisture sensors
because we had already used the rest of the analog ports for other sensors and also found out that

11

the Arduino could not provide enough current for all the sensors and it would cause the program
to hang.

12

Conclusion:

The Smart Irrigation System using a Microcontroller is a successful application of
advanced technologies to the area of agriculture. We accomplished the goal stated of creating a
system that can monitor and upkeep the plants and environment that they are in. Over a test
period of a few weeks the first plant, a Viola, was growing strong. Some ends had to be trimmed
due to the container roof it was housed in being restrictive, however new ends are in the process
of sprouting. The second plant, a succulent, was seen to be in a healthy state with SISM only
needing to water the succulent 1-2 times based upon the determined ratio that was seen by
mirroring the values observed from the plant soil moisture directly from the store.

The capability of keeping both plant specimen alive demonstrates that the SISM is able to
account for the difference in water intake from both plants and without the necessity of human
input, maintaining the specimen group. The completion of the current design phase marks a
system that is both complete in its goals as well as a good base for implementing a further
specialized system capable of more precise control over the environment. With monitoring
devices already in place for the temperature and light, these peripheral units can be utilized to
ensure that new additions to the system such as heaters or uv growing lights can be controlled
based on the inputs from these sensors.

Development of this system presented challenges that we were able to solve and learn
from. Our first finalized design has taught us many skills necessary to be able to work with and
design agriculture based microcontroller technologies. In the future, microcontroller based
systems will be a backbone in farming technology due to their capability to effectively supply
farmers with hands off solutions allowing them to manage the bigger picture of their crop
environment. These technologies will be essential in the progression of the human population
making the early finding of this project highly important to our engineering education.

13

References:
Rafiquzzaman, M. Microcontroller Theory and Applications With the PICI8F. John Wiley and

Sons, 2018.

“In-Depth: Interfacing an [2C LCD with Arduino.” Last Minute Engineers, 12 Feb. 2023,

lastminuteengineers.com/i2c-lcd-arduino-tutorial/.

Admin. “Interface Capacitive Soil Moisture Sensor V1.2 with Arduino.” How To Electronics, 20

Nov. 2022, how2electronics.com/interface-capacitive-soil-moisture-sensor-arduino/.

“Arduino - 4-Channel Relay Module: Arduino Tutorial.” Arduino Getting Started,

arduinogetstarted.com/tutorials/arduino-4-channel-relay-module. Accessed 1 May 2023.

14

Code Addendum:

kinclude <LiquidCrystal I2C.h> // include the LiquidCrystal I2C likrary
LiquidCrystal I2C 1led{0x27,16,2); // initialize the led display with 1€ columns and 2 rows
int lightsensorValue = 0; // initialize the wariakle for the light sensor

const int tempPin = A3; // define the analog input pin for the temperature sensor (LMTE4)
float tempC = 0; // initialize the temperature valus in Celsius

float tempF = 0; // initialize the temperature value in Fahrenheit

const int btnPin = 12; // define the digital input pin for button 1
const int btn2Pin = 13; // define the digital input pin for buttomn 2
int btnState = 0; // imitialize the state of button 1

int btn2State = 0; // initialize the state of button 2

int ledState = 0; // initialize the state of the leod display

int CutToRelaylDRY
int CutToRelayiWet

int InMoistureSensorl = AQ; // define the analog input pin for the first moisture sensor

2; // define the digital output pin for the dry pump relay

3; // define the digital output pin for the wet pump relay

int InMoistureSensorZ = Rl; // define the analog input pin for the second moisture sensor
float MoistureSensorValuel = 0; // initialize the wvalue of the first moisture sensor
float MoistureSensorValue2 = 0; // initialize the wvalue of the second moisture sensor

int MoistlPercentage = 0; // initialize the percentage of moisture for the first sensor

int Moist2Percentage = 0; // initialize the percentage of moisture for the second sensor

void setup()

Serial.begin{9600); // initialize serial communication

led.init(); // initialize the lcd display
led.clear(); // clear the lecd display
lcd.backlight({); // turn on the backlight for the lecd display

led.setCursoxr (0,0); // set the cursor to the top left corner of the leod display

pinMode (Bl, INPUT); // set pin Bl as an input

pinMode (B2, INPUT); // set pin AZ as an input

pinMode (8, CUTBUT); // set pin 9 as an output

pinMode (btnPin, INFUT); // set pin btnPin as an input

pinMode (btn2Pin, INPUT); // =et pin btn2Pin as an input

pinMode (OutToRelaylDRY, CUTEUT); // set pin OutToRelaylDRY as an output
pinMode (OutToRelay2Wet, OUTPUT); // set pin OutToRelayZWet as an output
pinMode (InMoistureSensorl, INPUT); // set pin InMoistureSensorl as an input
pinMode (InMoistureSensor2, INPUT); // set pin InMoistureSensorZ as an input

digitalWrite (QutToRelaylDRY, HIGH); // set the initial state of the dry pump relay to off
digitalWrite (OutToRelay2Wet, HIGH); // =set the initial state of the wet pump relay to off

15

void loop() {
// Read temperature from analog pin and convert to Fahrenmheit
int tempRead = analogBead(tempPin);
float tempmV ((float) tempRead) *4.9;
float volt_v = tempmV,/1000.0;
float temp C = (1035.0 - tempmV)/5.55;
float temp F = 1.80 * temp C + 32.0;

// Read state of two buttons
btnState = digitalBRead(btnPin):;
btn25tate = digitalBead(btn2Pin);

S/ Print temperature to serial monitor
Serial.println("LMTE4 Temp Sensor: "):

Serial.p T ({"Rnalog: "); Serial.p:i:t;::tempﬁead}J

Serial.print {"mVolts: ")}; Serial.println(tempmV,4);

Serial.print ("Temp: "): Serial.printlin(temp F, 4);

// Read sensor data and update moisture percentage values
sensorRead (lightsensorValue, InMoistureSensorl, InMoistureSensorl);

// Determine LCD state based on button press
if (btnState == HIGH) {

if(lcdState<l) lcdState++;

else if({lcdState>0) lcdState-—-;

}
if (btn2S5tate == HIGH) {
if(lcdS5tate>0) lcdState--;
else if(lcdState<l) lcdState++;
¥

J/ Control water pump based on moisture sensor readings
if (MoistureSensorValusl = 400) {
digitalWrite (OutToRelaylDRY, LOW) ;
}
else {
digitalWrite (CutToRelaylDRY, HIGH) ;

if (MoistureSensorValue2 = 300) {
digitalWrite (CutToRelay2Wet, LOW) ;
}
else {
digitalWrite (CutToRelay2Wet, HIGH) ;

J/ Update LCD display with sensor data
printPage (lcdState, temp F, lightsensorValue, MoistureSensorValuel,/10, MoistureSensorValues2/10):

J/ Delay for 500 milliseconds before looping again
delay (500);

16

// Read moisture sensor data

voild sensorRead(int lighsensorValue, int InMoistureSensorl, int InMoistureSensorz){
S Read light sensor data
lightzensorValue = analogRead (A2);
Serial.println(lightsensorValue);

// Bead moisture sensor 1 and print wvalue
MoistureSensorValuel= analogBRead (InMoistureSensorl):;
MoistlPercentage = map (MoistureSensorValuel,15%,514,100,0);
Serial.print ("Moisture Sensor 1 Value: ")

Serial.print (MoistureSensorValuel) ;

// Bead moisture sensor 2 and print wvalue
MoistureSensorValue2= analogBRead (InMoistureSensor2);
MoistZPercentage = map (MoistureSensorValue2,186,512,100,0);
Serial.print (" Moisture Senscr 2 Value: ");
Serial.println (MoistureSensorvValue2) ;

// Delay for 1 second before continuing
delay (1000) ;

volid printPage (int lcdState, int temp F, int lightsensorValue, int MoistureSensorValuel, int MoistureSensorValue2) {

// Check if the lcdState is O
if (lcdState == 0){
// Clear the LCD screen
lcd.clear():

/{ Set the curscr position to display "Plant 1™ on the first row
lcd.setCursor (0, Q)
led.print ("Plant 1");

/f Set the cursor position to display "Plant 2" on the first row, 8 characters from the left
lcd.setCursor (8, 0):
lcd.print ("Plant 2");

/{ Set the cursor position to display "Scil:"™ on the second row, first column
lcd.=setCursor (0, 1)
led.print ("Soil:™);

// Display the moisture level of the first plant on the second row, after "Soil:"

lcd.print (MoistlPercentage) ;
/f Set the cursor position to display "So0il:™ on the second row, eighth column

lcd.setCursor (8, 1)
lcd.print ("Soil:");

17

