
California State Polytechnic University Pomona
Department of Electrical and Computer Engineering

ECE 4303-01

RFID Attendance Project

Group 5
Presented By
Chia Yuan Wu

Ethan Sivasubramanian
Alexander Ov
Luke Yu

August 1, 2023



Table of Contents:

Abstract…………………………………………………………………………………...2

Introduction ……………………………………………………………………………...3

Experimental Methodology ……………………………………………………………..4

Experimental Results ……………………………………………………………………9

Challenge Summary…………………………………………………………………….13

Conclusions……………………………………………………….……………………..14

References ………………………………………………………………………………15

Code Addendum………………………………………………………………………...16

1



Abstract:
This paper presents an Internet of Things (IoT) attendance tracker project that uses a

Raspberry Pi, Arduino UNO, and RFID trackers. The RFID trackers are used to authenticate the
identity of students or employees, and the data is then transmitted through internet protocols to a
database and a web app. This project provides an alternative way to take attendance that is more
efficient and secure than traditional methods.

The project begins by setting up the hardware components. The Raspberry Pi is used as
the central controller, and the Arduino UNO is used to read the RFID tags. The RFID tags are
programmed with a unique identification number for each student or employee.

The next step is to develop the software. The software is responsible for reading the
RFID tags, transmitting the data to the database, and updating the web app. The software is
written in Python, and it uses serial communication to transmit the data.

The final step is to deploy the project. The database is hosted on a cloud server, and the
web app is hosted on a web hosting service. RFID trackers are deployed in classrooms or
workplaces.

The project has been tested successfully, and it has been shown to be a more efficient and
secure way to take attendance. The project is also scalable, so it can be easily adapted to larger
organizations.

Figure 1: RFID Sensor using a Microcontroller

2



Introduction:

This paper presents a comprehensive analysis of an integrated system that uses RFID technology
to create a seamless data storage and management solution. At the core of this system is the
utilization of an Arduino Uno microcontroller, a Raspberry Pi single-board computer, Flask - a
lightweight web framework, and the MySQL database. By interconnecting these components, the
project aims to showcase the potential solution to RFID data handling, from tag reading to
database storage and web-based visualization.

The integration of the RFID reader, Arduino Uno, Raspberry Pi, Flask server, and MySQL
database serves as the backbone of a small system designed to streamline the process of
capturing and storing RFID tag data. The RFID reader, acting as the gateway to the digital world,
interacts with the physical RFID tags, extracting unique identification information from them.
The Arduino Uno acts as the intermediary, processing the tag data and forwarding it to the
Raspberry Pi for further processing.

The Raspberry Pi, a versatile and compact computing platform, serves as the bridge between the
Arduino and the backend Flask server. It enables seamless data transmission and communication,
ensuring that the RFID tag information is relayed to the Flask server. The Flask server, with its
simplicity and extensibility, plays a pivotal role in data logging and real-time monitoring. It
establishes a web-based interface through which users can access and visualize the collected
RFID data.

The MySQL database provides the foundation for persistent and organized data storage. It not
only receives and stores the RFID tag data but also ensures data integrity and availability. The
collaborative operation of these components demonstrates the potential of a comprehensive
RFID data management system that can be applied across diverse domains, such as inventory
management, access control systems, and attendance tracking.

Throughout this paper, we detail the intricacies of each component's configuration, show the data
flow from RFID tag detection to database storage, and present the experimental results that
validate the system's efficacy and accuracy.

3



Experimental Methodology:
This code is written in Arduino, Python, and MySQL programming languages and

includes the use of an RFID sensor, a Raspberry Pi, and an Arduino UNO to sense RFID tags
and store information on a web server. It was designed to be small, compact, and power efficient
in order to be installed anywhere.

The Arduino code starts with including the Serial Peripheral Interface(SPI) and
MFRC522 libraries, which enables the code to communicate with the RFID sensor. The code
then defines some constants based on pin usage. It then initializes the RFID module and sets the
constants to the associated pins. Then it sets up serial communication at a baud rate of 9600,
initializes the SPI bus, and starts the MFRC522 library.

Experimental Methodology for the Integration of RFID Reader with Arduino Uno,
Raspberry Pi, Flask Server, and MySQL Database

Hardware Setup:
The team connects the MFR 5200 RFID/NFC to Arduino Uno using the proper pin

layouts given by the model’s datasheet. They powered the Arduino Uno and RFID reader using a
suitable power source as well as the necessary impedance. Set up the Raspberry Pi and connect it
to the same network as the Flask server.

Arduino Programming:
Arduino code to interface with the RFID reader module.

● Utilize a suitable library (e.g., MFRC522 library) to communicate with the RFID
reader.

● Configure the Arduino to read RFID tag data (UID) upon detection.

Raspberry Pi Configuration:

● Install necessary software packages on the Raspberry Pi, including Python and
relevant libraries (e.g., RPi.GPIO).

● Establish a serial connection between the Raspberry Pi and Arduino Uno using
GPIO pins.

Flask Server Setup:

● Install Flask on the Raspberry Pi using pip.
● Develop a Flask web application with routes for receiving RFID tag data from the

Arduino.
● Configure routes for handling data storage and retrieval.

MySQL Database Configuration:

● Set up a MySQL database on a separate server or on the Raspberry Pi itself.
● Create a database schema with a table to store RFID tag data, including fields

such as tag ID (UID), timestamp, and any additional relevant information.
Data Flow:

4



When an RFID tag is detected by the Arduino, the Arduino reads the tag's UID. The Arduino
sends the UID to the Raspberry Pi via the established serial connection. On the Raspberry Pi, the
Flask server receives the UID as an HTTP request. The Flask server parses the received data and
inserts it into the MySQL database, along with a timestamp.

Data Logging and Web Interface:

● Develop Flask routes to retrieve data from the MySQL database for display on the
web interface.

● Create HTML templates for the web interface to visualize the stored RFID data.
● Implement real-time updates or periodic data retrieval from the database to keep

the web interface current.

Experimental Procedure:

1. Build a circuit that consists of an RFID reader, Arduino UNO, and Raspberry Pi.
2. Place various RFID tags within the detection range of the RFID reader.
3. Power on the Arduino Uno and Raspberry Pi.
4. Launch the Flask web application on the Raspberry Pi.
5. Monitor the Flask web interface to observe real-time RFID tag detection and data

logging.

5



Figure 2: Diagram of Arduino Development Board

Figure 3: MFR 5200 RFID/NFC Sensor

6



Figure 4: Diagram of Raspberry Pi 3

Figure 5: Diagram of RFID communication

7



Figure 6: Diagram of our Software Flow

8



Experimental Results:

This study presents the experimental results of a project that integrates Raspberry Pi,
Arduino UNO, and RFID trackers, which creates a system that efficiently reads and stores RFID
tags into an open-source database. The execution of transmission of data is operated by the
Python and RFID codes which incorporate appropriate protocols at the software level.

Figure 8 shows the steps in order to ensure the readings for the RFID tags by the Arduino
UNO. The RFID program enables the Arduino to read the unique identifier or serial number of
each tag and display the data in the serial monitor. As each unique UIDs are shown, it is
confirmed that the Arduino has correctly read and stored the data. After the tags of the RFID are
successfully read by the Arduino, the Python script function is to transfer the UIDs from the
Arduino UNO to the Rasberry Pi. This is transmission is due to the fact that the Rasberry Pi
functions as the central controller that incorporates the connection of the Flask server and
mySQL while the Arduino UNO’s function is to simply read the serial inputs. Figure 9 shows the
outputs of the Python script which are for intaking serial data from Arduino UNO. The serial
tags are the same as the ones read by the Arduino UNO which can then verify a successful
transmission.

To finally implement the RFID project, the Python scripts that connects the Flask server,
MySQL, and for intaking serial data and posting it to the web server were implemented. The
script also included the time and date with the serial numbers that were read by the Arduino
UNO as shown in the Python script in Figure 10. The program first retrieves the UID’s from the
function data.get() and then checks for possible errors by boolean expressions. Finally, the data
and time is retrieved and then is logged into the MySQL database. In Figure 10, the Logs of the
MySQL database accurately stored and output the correct data read by the Arduino.

The experimental results of this project showcase the successful integration of an
Arduino-based RFID reader, Raspberry Pi, Flask and MySQL, resulting in a reliable and efficient
system for RFID data collection, storage, and real-time monitoring. The system's accurate
reading performance, minimal latency, robust database management, and user-friendly web
interface highlight its suitability for a range of practical applications. Further development and
customization can extend its capabilities to address specific use cases and industry needs.

9



Figure 7: Visual Assembly of the project

10



Figure 8: Outputs of the UID’s of each tag read by the Arduino UNO

Figure 9: Outputs of the Python script for intaking serial data from Arduino UNO

11



Figure 10: Logs of the MySQL database

12



Summary of Challenges:

After the team built a circuit incorporating the Raspberry Pi, RFID reader and LCD

screen, the LCD screen was not displaying anything on the screen. The hardware was first

inspected for incorrect pining. However, after rebuilding the circuit from scratch again, the LCD

screen still gave major problems, and the team decided that it must be a programming error. This

led to the team rewriting a simple Python script to read the RFID tags and then display the UIDs

in the LCD as well as the terminal. The script ran with no errors and was able to display the UID

in the terminal but was not appearing the LCD screen. We concluded that the data was

successfully read and stored but the signals were not successfully transmitted to the LCD display

in the hardware. This was possibly the LCD display being damaged due to the soldering the pins.

The team decided to move on from the issue due to it being low priority because the mySQL

database will also show all the outputs needed to ensure correct RFID reading and transmission.

The next issue was attempting to incorporate the function of the RFID MFRC522 to work with

the raspberry pi 3 model. The team attempted to locate the issue by first starting to examine the

hardware setup. Just like the previous issue with the LCD screen, we attempted several times to

rewire the circuit on the breadboard and see if that was causing an issue, followed by reviewing

the software requirements of this concept including the drivers, libraries, and ay other

dependencies necessary. We even tried upgrading and downgrading certain dependency versions

to see if the compatibility had changed over updates and when that did not work the main chunk

of troubleshooting went towards verifying the serial communication between the pi and the

RFID module. The only workaround to this was to switch out the PI for an Arduino development

board which was able to replicate the serial communication and allow us to make a working

product. Finally, we ran into a similar issue with the LCD screen and using the Arduino instead

13



of the PI. We repeated the same troubleshooting steps for the Arduino except had a couple more

bases to cover. Along with checking the previous items such as wiring and software, we also

needed to verify the initializations for the Arduino, check the power supply for the board, and

make sure the power signal is a valid level for the Arduino to function. Attempting to use the

default Serial communication pins was another option that was tried

Conclusion:
The RFID Attendance project was a successful application of creating a small portable

web server that could keep track of people's whereabouts. The project accomplished the main
goal of creating an attendance tracker that can keep track of who has been coming and going
through a single tap of their RFID tag.

Through testing, the project was successfully able to log unique tags and users and keep
track of the exact time and date it was tapped. The information was transmitted from the sensor
to a web server using Python and stored in a MySQL database.

While the project's scope was only intended for keeping track of attendance, the
technology could be further expanded. For example, by pairing it with facial recognition and
weight sensors, Amazon Go has been able to create a fully autonomous store that keeps track of
what you grab and charges you appropriately. Furthermore, RFID/NFC technology has also been
used in things such as Apple Pay and Google Pay, allowing for quick encrypted ways of
transferring data.

With the rise of RFID and NFC technology, we are on the cusp of a world where people
can instantly transmit data with a single tap. This has the potential to revolutionize the way we
interact with the world around us. For example, RFID tags could be used to track the location of
assets in a warehouse or to provide access control to a building. NFC tags could be used to pay
for goods and services or to share contact information with other people.

The possibilities are endless, and the RFID Attendance project is just a small glimpse of
what is to come.

14



References:

[1] “Arduino - RFID/NFC: Arduino tutorial,” Arduino Getting Started,

https://arduinogetstarted.com/tutorials/arduino-rfid-nfc#content_arduino_rfid_nfc_code

(accessed Aug. 3, 2023).

[2] B. A. Forouzan, TCP/IP Protocol Suite. Boston: McGraw-Hill/Higher education, 2006.

[3] “MFRC522,” MFRC522 - Arduino Reference,

https://www.arduino.cc/reference/en/libraries/mfrc522/ (accessed Aug. 3, 2023).

[4] T. Malik, “RC522 RFID reader module,” Microcontrollers Lab,

https://microcontrollerslab.com/rc522-rfid-reader-pinout-arduino-interfacing-examples-feat

ures/ (accessed Aug. 3, 2023).

15



Code Addendum:

16



17


